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Hierarchical Order of Galilei and Lorentz Invariance 
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The structure of matter shows a hierarchical order: ( l )  from Lorentz invariance 
in high-energy physics; (2) to Galilei invariance in the low-energy nonrelativistic 
limit of high-energy physics; and (3) again to Lorentz invariance in condensed 
matter physics (where the velocity of sound takes the place of the velocity of 
light). The hierarchical order can be continued downward further to: (4) non- 
relativistic (velocity small compared to the velocity of sound) condensed matter 
excitons, obeying Galilei invariance; and (5) to excitonic matter obeying 
Lorentz invariance with an excitonic matter sound velocity. It was previously 
conjectured that Lorentz invariance of high-energy physics is preceded by 
Galilei invariance at the Planck scale. Still further, the conjectured Galilei 
invariance at the Planck scale may be the result of an underlying five-dimen- 
sional non-Euclidean conform invariant metric structure, with three spatial and 
two time dimensions, compactified onto three spatial and one time dimension. 

1. I N T R O D U C T I O N  

Voight (1887) showed as far back as 1887 that any wave equation of 
the form 

1 02~b 
c2 ~?t2 t-V2~b=O (1.1) 

obeys Lorentz invariance. This means that Lorentz invariance is also valid 
for acoustic waves, provided the velocity of light is replaced with the 
velocity of sound. The significance of Lorentz invariance in acoustics was 
recognized by Prandtl (in a rule named after him), often used for gas 
dynamic calculations. Kiissner (1940), for example, applies the Lorentz 
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transformation to compute the wave field of a moving sound source. The 
m:gument may be made that Lorentz invariance of the sound field is not 
"real," because it depends on a gas which is its carrier, consisting of 
molecules which obey nonrelativistic Newtonian mechanics. But if this 
position is taken, one may ask if Lorentz invariance observed in high- 
energy physics is unreal in a likewise sense. Theoretical arguments suggest 
a unification of all forces (except gravity) at the very high energy of 

1016 GeV, corresponding to a length of ~ 10 -3o cm. A unification with 
gravity is expected at an energy of ~ 1019 GeV (at a length of ~ 10 33 cm) 
not very far away (on a logarithmic scale) from the energy of ~ 1016 GeV. 
A case can therefore be made that the observed Lorentz invariance in high- 
energy physics (with energies far below 1016-1019 GeV) is in reality the 
result of a hidden substratum or aether made up from very small discrete 
objects, obeying at very high energies a nonrelativistic law of motion. 
According to this conjecture, elementary particles would have to be under- 
stood as quantized quasi-particles, like the quasiparticles known from con- 
densed matter physics. In the especially simple case of a gas or liquid, the 
quasiparticles are phonons. For  these quasiparticles, the term "very high 
energy" would mean an energy corresponding to a wavelength near the de 
Broglie wavelength of the molecules making up the gas or liquid. Under 
normal conditions, the energy of the phonons is much smaller, very much 
like the observed elementary particles in high-energy physics, which have 
an energy well below ~ 1016 GeV. An ideal gas can therefore serve as a 
model to demonstrate how Lorentz invariance can be derived from an 
underlying Galilei-invariant structure. 

Comparing condensed matter physics with elementary physics, 
phonons correspond to photons, and excitons to fermions, but the 
similarity does not end here. Even the Higgs mechanism has a condensed- 
matter-physics counterpart in the Landau-Ginzburg equations of super- 
fluidity, and the fractional quantized Hall effect can be explained in terms 
of fractional charges, mimicking fractionally charged quarks. In spite of 
many striking analogies between condensed matter and high-energy 
physics, there is one important difference. Whereas the condensed matter 
state has a nonzero mass density, the mass density of the vacuum is zero 
(respectively, appears to be indistinguishable from zero). 

Prior to Einstein, it was shown by Lorentz and Poincar6 that all 
relativistic effects can be explained by postulating the existence of an 
aether, because if electromagnetic waves in the aether rest frame obey 
Maxwell's equations, and if all material objects are held together by elec- 
tromagnetic forces, or forces acting like them, bodies in absolute motion 
against the aether with a velocity v would suffer a real contradiction by the 
factor (1 -v2/c2) 1/2 and clocks made from such bodies would go slower by 



Hierarchical Order of Galilei and Lorentz lnvariance 1551 

the same factor (Prokhovnik, 1967). In this interpretation, Lorentz 
invariance is seen as an illusion caused by true physical deformations, but 
because the vacuum has no mass, this older pre-Einstein Lorentz-Poincar6 
theory of relativity lost ground, giving way to Einstein's theory of relativity 
explaining Lorentz invariance as a purely kinematic symmetry of space and 
time. The advent of quantum mechanics, however, showed that the 
problem of a massless vacuum is a much more subtle one than Einstein 
could have possibly thought. Assuming the correctness of the theory of 
relativity as a space-time symmetry, quantum theory leads to an infinite 
vacuum energy caused by the zero-point vacuum fluctuations of the elec- 
tromagnetic (and other) fields. An infinite vacuum energy should result in 
infinite gravitational fields, which are obviously not observed. 

In condensed matter physics, we have the phenomenon of electric 
charge neutrality. That it is highly perfect can be illustrated by the force of 

10 ~6 tons needed to separate the charges in l cm 3 of condensed matter. 
In analogy to this electric charge neutrality, one may entertain the 
hypothesis that the vacuum has a second negative mass component cancel- 
ing the huge positive mass component of the zero-point energy, leading to 
the observed "mass neutrality" of the vacuum. According to Planck (1899), 
all measurable quantities of physics should be expressed by the three 
fundamental constants, h (Planck's constant), c (velocity of light), and G 
(Newton's constant), leading to the Planck length ~ 10 -33 cm and Planck 
mass ~ 10 5g as expressed in terms of these constants. General relativity 
in combination with quantum mechanics suggests that the vacuum should 
be densely filled with Planck masses, each having the spatial extension of 
a Planck length. Because the resulting vacuum mass density would be huge 
( ~  10 95 g/cm3), it was suggested by Sakharov (1968) that it is compensated 
by "ghost particles." Since in a nonrelativistic theory the Hamilton 
operator commutes with the particle number operator, I have put forward 
thehypothes i s  that Sakharov's "ghost particles" are negative Planck 
masses, and that the vacuum is densely filled with an equal number of 
positive and negative Planck masses, with both the positive and negative 
Planck masses obeying an exactly nonrelativistic law of motion. In such a 
model, the total number of each species of Planck masses is conserved and 
no decay of positive into negative masses is possible. A cube with a side 
length of 1 F and densely filled with positive Planck masses alone would 
have a mass about equal to the mass of the entire known universe, 
demonstrating the even more perfect mass neutrality of the vacuum if com- 
pared with the electric charge neutrality of condensed matter. The interac- 
tions between the Planck masses are assumed local, repulsive between 
Planck masses of equal and attractive between those of opposite sign, with 
both components forming a superfluid, taking the place of the pre-Einstein 
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Table 1 

Some Correspondences between High Energy and Condensed Matter Physics 

High-energy physics Condensed matter physics 

Lorentz invariance with velocity of light 
Planck energy cutoff 
Mass neutrality of vacuum 
Photons, gravitons, etc. 
Fermions 
Dirac hole theory 
Goldstone boson 
Higgs field 
Fractional charges of quarks 

Parity anomaly 

Lorentz invariance with velocity of sound 
Debye energy cutoff 
Electric charge neutrality of condensed matter 
Phonons, rotons 
Excitons 
Electron holes in solids 
Plasmon 
Landau-Ginzburg field of superfluidity 
Fractional electron charges in fractional 

quantum Hall effect 
Quantum Hall effect without Landau levels 

aether of 19th century physics. The quasiparticles of this quantum aether 
would be what one calls elementary particles. Lorentz invariance in 
elementary particle physics would be a dynamic symmetry to follow from 
collective modes of the Planck aether, obeying the classical wave equation 
(1.1.). In a similar way as the existence of excitons (and other quasipar- 
ticles) in condensed matter physics depends on the coexistence of equal and 
opposite electric charges, the elementary particles in high-energy physics 
would have to be understood to result from the coexistence of positive and 
negative Planck masses. Only a configuration of interacting positive and 
negative Planck masses has the potential to result by partial mutual com- 
pensation in the much smaller mass of elementary particles if compared 
with the Planck mass. 

In Table I, a number of correspondences between high-energy and 
condensed matter physics have been put together side by side. 

2. FROM GALILEI TO LORENTZ INVARIANCE 

It was shown by Selleri (1990) that in addition to the Galilei and 
Lorentz transformations there is an infinite number of transformations 
interpolating between both, but that only the Galilei and Lorentz transfor- 
mations form a group. Selleri's considerations were purely kinematic, but 
it is easy to show how the transition from one to the other group can be 
understood dynamically. 
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To demonstrate this transition, we consider N interacting particles of 
mass m o described by a nonrelativistic many-body Galilei-invariant 
Hamiltonian function 

p2 
H(pl ,  p~ ..... q~, q2,...)= ~mo + V(ql, q2,...) 

i 

(2.1) 

where V is a nonrelativistic interaction potential. The transition to quan- 
tum mechanics is, as usual, done by putting Pi = (h/i)Q/Oqi. In the limit 
N--* oo, and if the interaction potential V between the particles can be 
described by a delta function, the many-body Schr6dinger equation for the 
Hamilton operator constructed from the Hamiltonian function (2.1) can be 
replaced by the operator field equation 

it/04' h 2 - V20 +f20'~9 O (2.2) 
c~t 2m o 

where f is a coupling constant and where the operators ~, ~* obey the 
commutation relations 

[~,(r) 0+(r')] = 6(r - r') 

[0(r) tp(r')] = [~p*(r) 0*(r')] = 0 
(2.3) 

In solving the nonlinear operator equation (2.2), we make the Hartree 
approximation (Nozieres, 1966) 

q)= <~,> 

(P*= ( 0 ' )  (2.4) 

by which (2.2) becomes a nonlinear SchriSdinger equation: 

O~p h 2 
ih V2~o +f2~o*~o 2 (2.5) 

~?t 2too 

With Madelung's (!926) transformation 

n = (p*~o 

ih 
n u __.~ _ - -  

2mo 
[qo* Vqo - qo Vq~*] 

(2.6) 
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we obtain the hydrodynamic form of (2.5): 

dv 1 
grad(V+ Q) 

dt rn o 

On 
-~v+ div (nv) = 0 
U t  

(2.7) 

where 

dv c~v 
7=~+(v.V)v 

V = f 2 n  

h 2 V 2 Q- 
2mo x/n 

with V the "regular" and Q the "quantum" potential. 
Introducing the velocity potential 

(2.8) 

v = - g r a d  ~ (2.9) 

and the function 

W(n)= 1 f ( V + Q )  dn (2.10) 
/,/m 0 

we can derive the hydrodynamic equations (2,7) from the Lagrange density 

$1 = nmo[(b - �89 ~b) 2 - W(n)] (2.11) 

Variation with regard to n leads to 

�9 1 ! 
~b - ~  (grad ~b) 2 - - -  (V+ Q)=  0 (2.12) 

mo 

which is Bernoulli's equation. Euler's equation (2.7) is obtained from (2.12) 
by taking the gradient. Variation of (2.11) with regard to ~b leads to 

- t i  + div(n grad ~b) = 0 (2.13) 

which is the continuity equation. 
The Lagrange density ~1 is completely nonrelativistic and therefore 

Galilei invariant. The transition to a relativistic invariant Lagrange density 
is accomplished by two approximations: (1) keeping in ~ only terms 
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quadratic in n, ~b or the product of n and 0~; (2) omitting the quantum 
potential. 

The first approximation implies small-amplitude disturbances, and the 
second approximation long wavelengths. In making these two approxima- 
tions, one obtains the Lagrange density 

�9 n o 1 f Z n 2  
- - - -  ( 2 . 1 4 )  = n~  - ~ (V~)  2 

2 mo 

where n o is a constant density from which small departures are permitted. 
Variation of (2.14) with regard to n and q~ leads to 

(b - ( f 2 / m o ) n  = 0 
(2.15) 

- h  +noV2~b= 0 

Eliminating n from these two equations leads to the wave equation 

1-~ ~'+ V2~b = 0 (2.16) 
C- 

where 

c2=nof2/mo (2.17) 

The wave equation (2.16) can be derived from the Lagrange density 

= �89 [~: - c2(V~b) 2] (2.18) 

which, unlike ~ ,  is Lorentz invariant. If applied to acoustics, Lorentz 
invariance would break down for wavelengths smaller than the mean free 
path of the gas molecules. The way a system of particles can undergo a 
transition from Galilei to Lorentz invariance is, therefore, established on 
purely dynamical grounds. 

3. F R O M  G E N E R A L  R E L A T I V I T Y  T O  G A L I L E I  I N V A R I A N C E  

We now show how a transition from general relativity to a Galilei- 
invariant field theory is possible, at least in a rudimentary way. General 
relativity implies the replacement of the Minkowskian space-time metric by 
a general Riemannian metric expressed through the line element 

ds2 = gik d x i  d x k  (3.1) 

902/32/9-6 
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with the metric tensor gi~ given by a solution of Einstein's gravitational 
field equations: 

1 
R i k  - -  ~ gik R = XTik (3.2) 

Instead of Einstein's tensor field equation (3.2), we take its scalar contrac- 
ted form 

R = - ~ r  (3.3) 

and restrict its solutions to a scalar. We describe this scalar by a conform 
invariant metric 

d s  2 = u 2 ds~ (3.4) 

where u is a real, but otherwise arbitrary function of space and time, with 
ds o the Minko.wskian line element. Using the line element (3.4), one can 
express the curvature scalar as follows (Giirsey, 1953): 

R = 6 u  -3 [Zu (3.5) 

If u = 1, R = 0 and ds = dso. 

To connect u to the field ~o of some hypothetical background particles 
of number density no, we put 

u = q ~ / ~ o  (3.6) 

by which (3.5) becomes 

R 
�9 =~no q~3 (3.7) 

To make the transition to nonrelativistic energies, we put 

~1 = e irn~ (p (3.8) 

by which 

and 

~02 = ~,*~ (3.9) 

a2qo_ (a~ 2imoc2 gO _m2C4o ~ \ 
57- \a t  2 h at ~ ) -,.,0,2,/, (3.10) 

The first term in the parentheses of (3.10) can be neglected. For reasons 
explained below, we also omit the third term. We therefore make the 
replacement 

~ 2irn---2~ ~ + V2 (3.11) 
h at 
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whereby (3.7) becomes 

ih &p h2 Rh2 4/*tb 2 V 21// "q - -  (3.12) 
Ot 2m o 12mon o 

It has the same form as (2.2), describing a gas of particles with contact-type 
interactions. With the coupling constant given by 

.Rh 2 
. f ~  - - -  ( 3 . 1 3 )  

12mon0 

the wave propagation velocity is according to (2.17) given by 

Rh 2 
c 2 - 12mo 2 (3.14) 

Equation (3.12) shares with (3.7) the property that for f f=cons t ,  
R = 0. This condition could not be met if we had not omitted the third 
term in (3.10). But now we have a problem, because if R = 0 ,  then also 
c = 0. We therefore must repair the damage done in having left out the 
third term in the parentheses of (3.10). This is done by adding to (3.12) a 
term on the r.h.s., which thereby becomes 

h2 Rh2 Rh2 . 2 (3.15) 
ih ~ t  = - 2 m o  V2ff/-  1-~mo ~ + 12m0n0 ~ O 

Now, if R is given by (3.14) and if ~ = const, one has ~*~ = no. The second 
term added to the r.h.s, of (3.15) can be given a simple interpretation which 
can be seen as follows: The Schr6dinger operator - (h2 /2mo)V 2 must be 
replaced in a space of constant Gaussian curvature K by 

h 2 h 2 h 2 K  
- - - V 2 ~  - - - V 2 +  - (3.16) 

2m0 2mo 2m0 

In three-dimensional space, the curvature scalar R is expressed by K 
through (Eisenhart, 1926) 

K =  - R / 6  (3.17) 

whereby h2K/2mo = -Rh2/12mo . The second term in (3.15), therefore, can 
be seen as the effect of a negative space curvature, which for ~, = const is 
equal and opposite to the space curvature resulting from the third term. 
Both curvatures combined result in a flat (three-dimensional) space. 
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The term added to the r.h.s, of (3.15) can be accounted for in 
Einstein's contracted field equation (3.3) by making the following change in 
the expressions for R: 

This change can be interpreted to result from the compactification of one 
time dimension of a five-dimensional field equation, with three spatial and 
two time coordinates, and with the compaetification length equal to h/moc. 
We note that for a space of constant curvature, (3.18) has the same form 
as the Higgs field equation, which in the standard model is responsible for 
generating mass. Without the mass term added to the r.h.s, of (3.18), the 
particles associated with this field would have zero rest mass, as it is to be 
expected for spin-zero gravitons of the contracted Einstein equation (3.3) 
for R = - ~ T =  const. From this perspective, the Higgs field can be inter- 
preted to arise from the compactification of a five-dimensional scalar 
Einstein gravitational field equation. 

Applying these results to the Planck aether model, which assumes that 
space is densely occupied with an equal number of positive and negative 
Planck masses, the number density of the positive and negative Planck 
masses is n o = 1/2r3o, where r o is the Planck length. If mo is set equal the 
Planck mass, one has, because of moroc =h,  and by setting the value of c 
in (3.14) equal to the velocity of light, 

12 
R r~ (3.19) 

This very large value of the space curvature, consistent with the Planck 
length as the gravitational radius of a Planck mass, demonstrates the 
necessity for a compensating space curvature, which in the Planck aether 
model is provided by the negative Planck masses. The compactification 
length now becomes equal to the Planck length, as in the five-dimensional 
Kaluza-Klein theory. 

Inserting into (3.18) the value for R given by (3.19) and with 
no = 1/2r 3, one obtains from (3.18) the nonlinear relativistic wave equation 

(P 4rorp 3 = 0 (3.20) 
[~(P + r ~ -  

According to (3.10), we set in the nonrelativistic limit without any omis- 
sions 

~ v + V 2 +  (3.21) 
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and furthermore express ~0 by 6- It transforms (3.20) into 

ih 96 h2 - - =  -- V 2 6 - - m o c 2 6  q - n o m o C 2 6 * 6 2  (3.22) 
c3t 2mo 

With R given by (3.19), it is the same as (3.15). It can be interpreted as the 
field equation describing the positive Planck masses, by setting 6--* 6 + ,  
and correspondingly by setting -moc2= -nomoC26 * 6 - ,  where 6 -  is the 
field of the negative Planck masses. It is the second term on the r.h.s, of 
(3.22) which brings to light the need for negative Planck masses. With a 
similar equation valid for negative Planck masses, an equation for both the 
positive and negative Planck masses can be written down: 

a 6  + ~i 2 
ih--~-= -T- ~moV26 + + 2hcr~(6* 6 + - 6 * 6 - ) 6 + _  (3.23) 

It is this equation which was previously used as a model for the hypothetical 
P|anck aether. 

4. DISCUSSION 

We have shown that the simple model of a scalar field can serve to 
illustrate how Lorentz invariance can be understood as a dynamic sym- 
metry to follow from an underlying discrete Galilei-invariant structure. 
Taking the quantized Lorentz-invariant Klein-Gordon equation as the 
starting point instead, one obtains a discrete set of bosons. In the limit of 
nonrelativistic energies they can be assembled into a gas of interacting par- 
ticles, leading to an acoustic-type wave equation, again exhibiting Lorentz 
invariance, albeit with a different reference velocity. Quantizing the 
acoustic equation, in turn, leads to particles which in this case are 
phonons, but because these particles are of the zero-rest-mass type, there is 
no nonrelativistic low-energy limit from which a lower hierarchy could be 
deduced. This is possible in condensed matter, which has a much richer 
number of quasiparticles, in particular, nonzero-rest-mass fermionic 
excitons. In the low-energy limit, these excitons can condense into a novel 
form of matter, called excitonic matter. In turn, it can have its own 
quasiparticles and a velocity of sound associated with them. The existence 
of excitonic matter has been conjectured theoretically and its experimental 
verification by powerful laser discharges has been proposed (Haken, 1983). 

We can see at least five hierarchies: (l) Lorentz-invariant high-energy 
particle physics; (2) Galilei-invariant low-energy atomic physics; (3) 
Lorentz-invariant condensed matter quasiparticle physics; (4) Galilei- 
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invariant low-energy excitonic particle physics; and (5) Lorentz-invariant 
condensed excitonic matter  physics. In addition, there are other collective 
structures not included in this list, having their own respective invariant 
properties, notably condensed nuclear matter  physics and collective stellar 
and galactic structures. 

Because the Planck aether model describes physics at the Planck scale 
at which gravitational effects become predominant,  it is interesting to ask 
if (in the spirit of Einstein) it can be derived from a metric structure at or 
above this scale. We showed that this is possible. It was Einstein's hope 
that all elementary particles can somehow be explained by gravity alone, 
and that all of physics can be reduced to a curved space-time structure. 

In light of the conjectured underlying five-dimensional space-time 
structure above the Planck scale, the old controversy about  the existence 
or nonexistence- of the aether attains a new perspective, In the underlying 
five-dimensional space-time structure there is no aether, however, which is 
generated by compactification of one time dimension onto the Planck 
length. It  is this compactification which generates nonzero-rest-mass par- 
ticles, with a mass equal to the Planck mass. 

With the curvature scalar R related to the Gaussian curvature K in a 
space of n dimensions by (Eisenhart, 1926) 

R =  - ( n -  1 ) n K  (4.1) 

where for n = 4 one has R = - 12K, one can, in five dimensions, even write 
down the fundamental law in a very compact  form: 

K - -  - 1 /r  2 (4.2) 

The same law holds if the noncompactified space is six dimensional, 
with three spatial and three time dimensions, with the compactification of 

Table II 

Hierarchical Structure of Matter, Established and Conjectured 

Scale Symmetry 

Hyper-Planck 
Planck 
High-energy elementary particle physics 
Low-energy atomic physics 
Condensed matter physics 
Condensed matter low-energy excitons 
Excitonic matter 

Conformal five-dimensional Einstein 
Galilei 
Lorentz 
Galilei 
Lorentz 
Galilei 
Lorentz 
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two t ime d imens ions  genera t ing  the P lanck  mass. Assuming  an equal  num-  
ber of spacel ike and  t imel ike  d imens ions  has the appea l  for a more  sym- 
metr ic  fundamenta l  law. 

In Table  II  we have put  together  the hierarchical  s t ructure  of the 
known  and conjec tured fundamenta l  s t ructures  of mat ter .  
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